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Review: Price and Volatility 

Estimation models with a special 

reference to ARMA-GARCH 

Model in equity market 

  The estimation of future prices based on historical data is quite natural 

in today’s world. However, for accurate estimation of future price it is 

important to understand price volatility. Thus, this issue leads to 

development of many models for estimation of price volatility and at 

the end short-term forecasting of price. This conceptual paper tries to 

cover different model of price and volatility estimation namely: MA- 

Model, AR- Model, ARIMA- Model, ARMA- Model, ARCH- Model, 

GARCH- Model, EWMA- Model (Specific case of GARCH (1, 1)), 

EGARCH- Model, and mixture of AR-GARCH Model and at last 

mixture of ARMA- GARCH- Model. Each model is developed in 

such way that gives results more near to practical situation. However, 

they always have some basic assumptions and limitation in practical 

situation. In present study, based on literature survey it’s tried to 

identify that is ARMA-GARCH model works for price and volatility 

estimation in equity market or required some more strong model of 

estimation. 
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INTRODUCTION   

In today’s world, due to cut throat competition different mutual fund managers, portfolio service 

providers, brokers etc. are always trying to find out best-fit model for estimating price for better 

performance. There are some models and ways available for predicting returns of different 

financial assets. The estimation of future prices based on historical data is quite natural in today’s 

world. In fact, different models that support price and volatility estimation for different financial 

instruments are considered under the purview of technical analysis. However, for accurate 

estimation of future price of any financial instrument, it is important to understand price 

volatility of that instrument. Thus, this issue leads to development of different models for 

estimation of price volatility and at the end short-term forecasting of price.  

 

In volatile financial markets, both market participants and market regulators need models for 

measuring, managing and containing risks. Market participants need risk management models to 

manage the risks involved in their open positions. On the other hand, market regulators must 

ensure the financial integrity of the stock exchanges and the clearing houses by appropriate 

margining and risk containment systems (Varma, 1999). These understanding of volatility 

estimation motivate the different research to understand the applicability of different 

econometric models for the purpose of volatility estimation of financial instruments. Price trend 

and its fluctuation around mean works differently for different financial instruments. 

 

For estimating volatility and price, following models are widely used in the literature namely:  

(Moving Average) MA- Model, (Autoregressive) AR- Model, (Autoregressive Integrated 

Moving Average) ARIMA- Model, (Autoregressive Moving Average) ARMA- Model, 

(Autoregressive Conditional Heteroskedasticity) ARCH- Model, (Generalized Autoregressive 

Conditional Heteroskedasticity) GARCH- Model, (Exponential Weighted Moving Average) 

EWMA- Model (Specific case of GARCH (1, 1)), (Exponential Generalized Autoregressive 

Conditional Heteroskedasticity) EGARCH- Model, and mixture of AR-GARCH Model and at 

last mixture of ARMA- GARCH- Model and understanding their limitations and applicability for 

the volatility and price estimation in equity market in India. However, from literature review it is 

found that ARMA-GARCH model works better than other models when one want to estimate 
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volatility for equity markets. So, in present study price and volatility estimation models with a 

special reference to ARMA-GARCH model in equity market is reviewed. 

 

LITERATURE REVIEW 

In financial applications, model base first try to get price prediction through historical price trend 

done through simple moving average. In statistics, moving average is a type of finite impulse 

response filter used to analyze a set of data point by creating a series of averages of different 

subsets of the full data set (Chou, 1975). In addition to this, Varma (1999) provided a support 

indicating simple moving average is used for price prediction. However, AR- model tried to find 

relationship of historical price trend to current price trend due to its auto regressive 

characteristic. If so, that may be considered as weak form of market efficiency. The results of 

Mobarek and Keasey (2000) with parametric test auto-regression provided evidence that the 

share return series do not follow random walk model and the significant autocorrelation co-

efficient at different lags reject the null hypothesis of weak form efficiency in Dhaka Stock 

Market (Mobarek and Keasey, 2000). Furthermore, same results when checked with 

ARIMA/ARMA models were not consistent with weak form of market efficiency. 

 

The degree of stock market volatility can help forecasters predict the path of an economy’s 

growth and the structure of volatility can imply that “investors now need to hold more stocks in 

their portfolio to achieve diversification” (Krainer, 2002). The ARCH models introduced by 

Engle (1982) and its extension, the GARCH models (Bollerslev, 1986) have been the most 

commonly employed class of time series models in the recent finance literature for studying 

volatility. The appeal of the models is that it captures both volatility clustering and unconditional 

return distributions with heavy tails. The estimation of GARCH model involved the joint 

estimation of a mean and a conditional variance equation.  The findings of research had some 

implications for the investors in Fiji as volatility in the stock return of a firm stems from the fact 

that stock returns may no longer be seen as the true intrinsic value of a firm and thus the 

investors might start losing confidence in the stock market (Mala and Reddy, 2007). 

 

One of the principal empirical tools used to model volatility in asset markets has been the ARCH 

class of models. Following Engle’s (1982) ground-breaking idea, several formulations of 
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conditionally heteroscedastic models (e.g. GARCH, Fractional Integrated GARCH, Switching 

GARCH, Component GARCH) have been introduced in the literature (Bollerslev et al., 1992 

and Bollerslev et al., 1994). These models form an immense ARCH family. Many of the 

proposed GARCH models included a term that can capture correlation between returns and 

conditional variance. Models with this feature were often termed asymmetric or leverage 

volatility models. One of the earliest asymmetric GARCH models was the EGARCH 

(exponential generalized ARCH) model of Nelson (1991). In contrast to the conventional 

GARCH specification, which requires non-negative coefficients, the EGARCH model did not 

impose non-negativity constraints on the parameter space since it models the logarithm of the 

conditional variance. 

 

Although the literature on the GARCH/EGARCH models was quite extensive, relatively few 

papers have examined the moment structure of models where the conditional volatility is time 

dependent. Karanasos (1999) and He and Ter¨asvirta (1999) derived the autocorrelations of the 

squared errors for the GARCH (p,q) model, while Karanasos (2001) obtained the autocorrelation 

function of the observed process for the ARMA-GARCH-in-mean model. Demos (2002) studied 

the autocorrelation structure of a model that nests both the EGARCH and stochastic volatility 

specifications. In extending this literature, He et al. (2002) considered the moment structure of 

the EGARCH (1,1) model. 

 

Despite its simplicity and versatility in modeling several types of linear relationship such as pure 

autoregressive, pure moving average and autoregressive moving average (ARMA) series (Kwok 

et al., 1998), such type of models was constrained by its linear scope. The nonlinear serially 

dependent ARCH/GARCH and EGRACH group of models is widely accepted among 

econometricians and time series statisticians as the premier model of stock market returns, 

especially so for the GARCH(1,1) model. This wide acceptance rests on two bodies of empirical 

evidence.  

 

First, a number of statistical tests easily reject the null hypothesis of a linear process; this 

evidence against a linear process has been accumulating since the mid-1980s. Second, the 

parameter estimates of a GARCH (1,1) process are statistically significant when a model is 
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estimated on various examples of realized stock market returns and individual stock issues. This 

statistical significance of the parameter estimates is apparently sufficient evidence for the vast 

majority of empirical investigators to accept these models as true. Thus, it seems that historical 

price data followed partial linear and nonlinear characteristics. So, many researchers tried to 

applied mixture of ARMA-GARCH model for the purpose of volatility estimation like Kumar 

and Mukhopadyay (2002), Ling and McAleer (2003), Sparks and Yurova (2006), Wang et at. 

(2009) and Hossain et al. (2011)  

 

OBJECTIVES 

Present study aims to cover following objectives: 

 To understand different models of volatility estimation with special focus on ARMA-

GARCH model 

 To analyze whether ARMA-GARCH model is appropriate for equity market volatility 

estimation or not based on empirical support from past literature 

 

THEORETICAL FRAMEWORK 

Volatility forecasting is an important area of research in financial markets and lot of effort has 

been made in improving volatility models since better forecasts translate into better pricing of 

options and better risk management. In this direction, this paper attempts to evaluate the ability 

of ten different statistical and econometric volatility forecasting models in the context of equity 

market. 

 

A Moving average is a type of finite impulse response filter used to analyze a set of data point by 

creating a series of averages of different subsets of the full data set. An AR model is also known 

in the filter design industry as an infinite impulse response filter (IIR) or an all pole filter and is 

sometimes known as a maximum entropy model in physics applications. There is "memory" or 

feedback and therefore the system can generate internal dynamics. However, these internal 

dynamics are used with moving average of historical equity price known as ARIMA model for 

volatility prediction. When historical price trend used for volatility predictions, ARMA model 

become more applicable than ARIMA. These models used as parametric test for Auto-regression 

provide evidence whether the share return series do follow random walk model or not and the 
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significant autocorrelation co-efficient at different lags accept or reject the null hypothesis of 

weak form efficiency. 

 

However, ARMA model may results in error of estimation due to underlying assumption of 

linearity of data set that is difficult to realize through any statistical tool. The basic version of the 

least squares model assumes that the expected value of all error terms, when squared, is the same 

at any given point. ARCH/ GARCH models followed the assumption of homoskedasticity that 

covers nonlinear characteristic of data set.  Now, this ARCH/GARCH models have family of 

different regressive based models focusing on the volatility predictions. EWMA is a specific case 

of GARCH (1,1) model. However, many of researcher have used GARCH (4,1) and GARCH 

(5,1) models. These competing models are evaluated on the basis of two categories of evaluation 

measures – symmetric and asymmetric error statistics. Based on an out of the sample forecasts 

and a majority of evaluation measures we find that GARCH (4, 1) and EWMA methods will lead 

to better volatility forecasts in the Indian stock market and the GARCH (5, 1) will achieve the 

same in the forex market (Kumar, 2006). The same models perform better on the basis of 

asymmetric error statistics also. 

 

For the purpose of getting better prediction of equity volatility, many researchers used AR- 

GARCH and ARMA-GARCH models. These models with appropriate mixture of two derived 

different parametric tests for the best results of prediction with least error in volatility estimation. 

In next section detail of ARMA-GARCH model discussed with implications and limitations. At 

last different empirical evidence of best fit of ARMA-GARCH model for the equity volatility 

prediction is shown. 

 

ARMA-GARCH Mixture for volatility prediction  

a. ARCH model: 

In econometrics, an autoregressive conditional heteroscedasticity (ARCH) (Engle, 1982) 

model considers the variance of the current error term to be a function of the variances of 

the previous time periods' error terms.  

Specifically, let εt denote the returns (or return residuals, net of a mean process) and 

assume that, 
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εt= σt zt 

where zt ∼ iidN(0,1) and where the series σ
2
  are modeled by 

 

σt
2
 = α0 + α1 εt-1

2
 + …… + αq εt-q

2
 

where α0 > 0 and αi ≥ 0, i > 0. 

 

b. GARCH model: 

GARCH model has become an important in time series data analysis, particularly in 

financial applications when the goal is to analyze and forecast volatility (Bollerslev, 

1986; Ling and McAleer, 2002). 

 

If an ARMA model is assumed for the error variance, the model is a GARCH model. 

The GARCH model is an extension of the ARCH model. A GARCH model with order p 

≥ 0 and q ≥ 0 is defined as: 

Zt = εt / σt 

In that case, the GARCH (p, q) model (where p is the order of the GARCH terms σ
2
 and 

q is the order of the ARCH terms ε
2
) is given by 

σt
2
 = α0 + α1 εt-1

2
 +……+ αq εt-q

2
 + β1 σt-1

2
 +……+ βp σt-p

2
                                             

Generally, when testing for heteroskedasticity in econometric models, the best test is the 

White test. However, when dealing with time series data, the means to test for ARCH 

errors and GARCH errors (Davis and Brockwell, 2002). 

 

c. ARMA-GARCH model: 

The mixture of ARMA-GARCH model is similar to the mixture of AR-GARCH model 

proposed in Lanne and Saikkonen (2007). We can see each component of the mixture 

model can be denoted as a normal ARMA series: 

        R                           S 

yt,j = Σ brj yt-r,j + Σ asj εt-s,j + εt,j 

 

       
r=1                        s=1 

Furthermore, each residual term εt,j is assumed Gaussian white noise with variance 

denoted by the GARCH model. 
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                   Q                             P 

σ
2

t,j = δ0 j + Σ δqj ε
2
t-q,j + Σ βpj σ

2
t-p,j 

                  
q=1                          p=1       

where, δ0j ψ>ψ0 for qψ=1, Qψ and βpj >ψ0 for pψ=1 ψP. 

 

EMPIRICAL SUPPORTS OF USE OF ARMA-GARCH MIXTURE FOR VOLATILITY 

PREDICTION  

Wang et al. (2009) used GARCH model and ARMA-GARCH model for the index volatility 

prediction and provided empirical evidence with the help of R software. Output of parameters 

and coefficient of ARMA-GARCH model is shown in Table 1 and Table 2 respectively. 

 

Table 1: Output of R software (parameters for GARCH and ARMA-GARCH model) 

 AIC BIC SIC HQIC 

S&P GARCH (1,1) 14.13 14.19 14.13 14.16 

S&P ARMA (1,1) – GARCH (1,1) 9.08 9.16 9.08 9.11 

DOW GARCH (1,1) 18.28 18.33 18.28 18.30 

DOW ARMA(1,1)-GARCH(1,1) 13.38 13.46 13.38 13.41 

Source: Wang, Weiqiang; Guo, Ying; Niu, Zhendong and Cao Yujuan (2009) 

 

Table 2: Coefficient of ARMA-GARCH model for DOW and S&P 

  ar1 ma1  α1 β1 

DOW 31.1 1.0 0.20 461.3 0.20 0.80 

S&P 3.90 1.0 0.22 4.6 0.23 0.81 

Source: Wang, Weiqiang; Guo, Ying; Niu, Zhendong and Cao Yujuan (2009) 

 

Appendix 1 shows standardized residual tests and their results. Appendix 2 shows forecasted 

volatility and mean value of index based on models. Results of study showed that ARMA (1,1)-

GARCH(1,1) model provides excellent prediction, and this model is good fitting in stock indices 

data sets. Furthermore, model based simulation of Dow and S&P is shown in Figure 1. 
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Figure 1: Simulation of DOW and S&P for 1988-2008 

 

 

Source: Wang, Weiqiang; Guo, Ying; Niu, Zhendong and Cao Yujuan (2009) 

 

In another study by Munoz et al. (2003) different models of ARMA-ARCH and ARMA-GARCH 

are developed for the purpose of best fitted model identification in equity market. Table 3 shows 

coefficients for the different ARMA (0,0)-GARCH(1,1) models. Result of Table 3 and as per 

Munoz et al. (2003) ARMA-GARCH model work as best for equity volatility estimation. 
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Table 3: Coefficient for different ARMA-GARCH models 

 

Models  α1 β1 

1 0.5 0.10 0.40 

2 0.5 0.25 0.25 

3 0.5 0.40 0.10 

4 1.0 0.10 0.80 

5 1.0 0.45 0.45 

6 1.0 0.80 0.10 

Source: Munoz, L.; Olave, P. and Salvador, M. (2003) 

 

Appendix 3 includes the some more studies of ARMA-GARCH model, which indicated 

significantly better performance for volatility estimation of different companies or indexes. 

 

IMPLICATIONS AND LIMITATIONS 

Based on present study, it is found that ARMA-GARCH model is widely used model for 

estimating volatility of equity markets. However, within the use of ARMA-GARCH model there 

may be several combination or mixtures that required to further research to find out best fit 

model for different companies and indexes listed on exchanges. Different empirical research 

support the argument of best fit of ARMA-GARCH model for different large cap companies 

listed on NASDAQ and for different indexes like NASDAQ, NIFTY, DOW, S&P 500, DJIA, 

DAX, PSI20 and SENSEX. 

 

Use of ARMA-GARCH model for volatility estimation reduce the error in residual variance term 

and gives more accurate estimation. In way volatility estimation indicates price range for said 

period of volatility and act as measure of risk. One can use model for predicting volatility and 

based on risk ability can trade to creates appropriate returns through equity market. Furthermore, 

this estimation of volatility may also helps in determination of option pricing of equity and index 

which is depend on volatility. 

 

In present study due to time constrain and scope empirical tests are not performed on companies 

and Indexes listed on Indian equity market. One can use ARMA-GARCH model for volatility 

estimation of different stocks and Indexes listed on NSE or BSE. 
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However, this study has its own limitations like Study covers past data for the estimation of 

future volatility of stocks or index, which may not work for other time span. ARMA-GARCH 

model required to follow assumption of auto regressive and conditional heteroskedasticity for the 

applicability of model on the data of stocks or index for the volatility estimation. 

 

CONCLUSION 

ARMA and GARCH models have been applied to a wide range of time series analyses, but 

applications in finance have been particularly successful and have been the focus of this study. 

Financial decisions are generally based upon the tradeoff between risk and return; the 

econometric analysis of risk is therefore an integral part of asset pricing, portfolio optimization, 

option pricing and risk management. This paper has presented an example of risk measurement 

that could be the input to an equity market related decisions. The analysis of ARMA and 

GARCH models and their many extensions provides a statistical stage on which many theories of 

asset pricing and portfolio analysis can be exhibited and tested. However, mixture of ARMA-

GARCH model seems to be most fitted model for the volatility estimation in most of the 

companies and indexes traded in equity market. 
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APPENDIX 

 

Appendix 1: Statistic and p-Values for different test for DOW and S&P 500 

DOW  Statistic p-Value 

Jarque-Bera Test R Chi
2 

32.73165 7.80573 e-08 

Shapiro-Wilk Test R    W 0.9699429 5.80263 e-05 

Ljung-Box Test R Q(10) 12.66138 0.2432256 

Ljung-Box Test R Q(15) 15.99925 0.3821015 

Ljung-Box Test R Q(20) 26.12278 0.1617951 

Ljung-Box Test R
2
 Q(10) 5.925618 0.8214733 

Ljung-Box Test R
2
 Q(15) 12.30569 0.6557585 

Ljung-Box Test R
2
 Q(20) 16.77428 0.6675783 

LM Arch Test R TR
2 

8.500406 0.7449056 

S&P 500    

Jarque-Bera Test R Chi
2 

45.12342 1.590645 e-10 

Shapiro-Wilk Test R    W 0.967331 3.974364e-05 

Ljung-Box Test R Q(10) 10.14911 0.4275105 

Ljung-Box Test R Q(15) 13.35924 0.5745714 

Ljung-Box Test R Q(20) 21.20197 0.3853318 

Ljung-Box Test R
2
 Q(10) 9.062306 0.5262009 

Ljung-Box Test R
2
 Q(15) 15.88776 0.3895499 

Ljung-Box Test R
2
 Q(20) 18.19338 0.5746709 

LM Arch Test R TR
2 

9.176007 0.6878282 
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Appendix 2: Forecast of DOW and S&P 500 Indices 

DOW MeanForecast MeanError SD 

1 11845.88 2581.861 1691.019 

2 10303.48 3425.319 1688.436 

3 10303.48 3425.319 1685.867 

4 10303.48 3425.319 1683.313 

5 10303.48 3425.319 1680.774 

6 10303.48 3425.319 1678.250 

7 10303.48 3425.319 1675.740 

8 10303.48 3425.319 1673.245 

9 10303.48 3425.319 1670.764 

10 10303.48 3425.319 1668.297 

S&P 500    

1 1292.661 258.0161 207.1376 

2 1102.370 347.5169 208.0580 

3 1102.370 347.5169 208.9755 

4 1102.370 347.5169 209.8902 

5 1102.370 347.5169 210.8022 

6 1102.370 347.5169 211.7115 

7 1102.370 347.5169 212.6181 

8 1102.370 347.5169 213.5221 

9 1102.370 347.5169 214.4234 

10 1102.370 347.5169 215.3222 
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Appendix 3: ARMA-GARCH model for volatility prediction 

Name of author Study Company / Index Name 

Sparks, John J. and 

Yurova, Yuliya V. 

(2009) 

“Comparative Performance of 

ARIMA and ARCH/GARCH Models 

on Time Series of Daily Equity Prices 

for Large Companies” 

Oracle Systems Corp 

Coca Cola Co 

Coca Cola Bottling Co Cons 

Comcast Corp 

General Electric Co 

General Motors Corp 

International Business Machs Cor 

Pepsico Inc 

Apple Computer Inc 

Hershey Foods Corp 

Boeing Co 

Abbott Laboratories 

Dow Chemical Co 

Pfizer Inc 

Merck & Co Inc 

Hilton Hotels Corp 

Ford Motor Co Del 

Cooper Tire & Rubber Co 

Xerox Corp 

Donnelley R R & Sons Co 

Mcdonalds Corp 

Host Marriott Corp 

Wal Mart Stores Inc 

Southwest Airlines Co 

Century Telephone Entrprs Inc 

Federal Express Corp 

Toys R Us Inc 

New Germany Fund Inc 

Cisco Systems Inc 

Delta & Pine Land Co 

Universal Holding Corp 

Kumar, K. Kiran and 

Mukhopadyay, 

Chiranjit (2010) 

A case of U.S. and India NASDAQ 

S&P 500 

NIFTY 

SENSEX 

Curto, Jose Dias; 

Pinto, Jose Castro 

and Tavares Goncalo 

Nuno (2007) 

Modeling stock markets’ volatility 

using GARCH models with Normal, 

Student’s t and stable Paretian 

distributions 

DJIA 

DAX 

PSI20 
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